

Fig. 6. DTS, a,b-Projektion.

Summe der van-der-Waals-Radien (3,1 Å). H(12) ist als Hydroxylwasserstoff an O(3) gebunden. Der Winkel am Wasserstoff beträgt 158°. Möglicherweise besteht hier eine schwache Wasserstoffbrückenbindung O- $H \cdots S$, in der O(3) als Donor und S(2) als Akzeptor auftritt.

Die Autoren danken Frl. B. Cornelisen für die Anfertigung der Zeichnungen sowie den Herren Drs Eck und Adiwidjaja für die Durchführung der Diffraktometermessungen.

Literatur

- BUSING, W. R., MARTIN, K. O. & LEVY, H. A. (1962). ORFLS. Oak Ridge National Laboratory Report ORNL-TM-305.
- DEPMEIER, W. & JARCHOW, O. H. (1975). B31, 939-944.
- DEPMEIER, W., JARCHOW, O. H., STADLER, P., SINNWELL, V. & PAULSEN, H. (1974). Carbohydr. Res. 34, 219.
- DEWAR, R. B. K. (1970). In *Crystallographic Computing*, herausgegeben von F. R. AHMED, S. R. HALL & C. P. HUBER, S. 63. Copenhagen: Munksgaard.
- Еск, J. (1970). Unveröffentliche Rechenprogramme.
- FERRIER, W. G. (1963). Acta Cryst. 16, 1023.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368.
- JOHNSON, C. K. (1965). ORTEP. Oak Ridge National Laboratory Report ORNL-3794, revised.
- KITAIGORODSKI, A. J. (1961). Organic Chemical Crystallography. New York: Consultants Bureau.
- KOPF, J. (1973). Dissertation, Universität Hamburg.
- PAULSEN, H., SINNWELL, V. & STADLER, P. (1972). Chem. Ber. 105, 1978–1988.
- STRAHS, G. (1970). Advanc. Carbohydr. Chem. 25, 53.
- WILSON, A. J. C. (1949). Acta Cryst. 2, 318-321.
- WILSON, A. J. C. (1950). Acta Cryst. 3, 258-261.

Acta Cryst. (1975). B31, 949

Struktur des tetragonalen (B₁₂)₄B₂Ti_{1,3}..._{2,0}

VON E. AMBERGER UND K. POLBORN

Institut für Anorganische Chemie der Universität, D-8000 München 2, Meiserstrasse 1, Deutschland (BRD)

(Eingegangen am 10. Juni 1974; angenommen am 31. Oktober 1974)

Reduction of gaseous BCl₃ and TiCl₄ with H₂ on boron nitride substrate at $1050\cdots 1250$ °C yields twinned tetragonal crystals of the berthollide phase (B₁₂)₄B₂Ti_{1.3...2.0}. Most of the crystals have twinning angles of 36°52′ and have simulated a tetragonal unit cell with $a_z = 19.745$ and c = 5.072 Å. However the three-dimensional X-ray analysis at 20 ± 2 °C of a crystal (B₁₂)₄B₂Ti_{1.87} with a twinning angle of $28.0 \pm 0.2^{\circ}$ and unequal proportions of the twin components resulted in the structure of the so-called '*I*-tetragonal boron' with a = 8.830 (9), c = 5.072 (12) Å; V = 395.5 (1.7) Å³; $\rho_{exp} = 2.645$ (5), $\rho_{calc} =$ 2.647 (11) g cm⁻³; space group $P4_2/nnm$; R = 0.0658. Forty-eight of the boron atoms are joined together in the form of icosahedra which are arranged in a flat tetrahedron. At its centre – special equivalent position 2(a) – lies a titanium atom, with an environment of a 14-corner polyhedron. The single boron atoms occupy the special equivalent position 2(b) and have a distorted tetrahedral environment with respect to the boron atoms of the icosahedra. Each titanium atom is equally bonded to two single boron atoms (and *vice versa*) thus forming linear chains TiB, ... parallel to the c axis of the unit cell.

Einleitung

Hoard, Hughes & Sands (1958) beschrieben erstmals die Struktur des sogenannten *I*-tetragonalen Bors (α tetragonales Bor). Spätere Arbeiten von Amberger, Druminski & Dietze (1968), sowie von Ploog & Amberger (1971) zeigten, dass sich diese Struktur nur unter Einbau weniger Fremdatome bildet. Tabelle 1 enthält die bisher dargestellten borreichen Boride mit dieser durch Fremdatome stabilisierten *I*-tetragonalen Struktur. Im Verlauf unserer Überlegungen über supraleitende Verbindungen interessierte uns die durch Titanatome stabilisierte *I*-tetragonale Struktur.

Experimentelles

 BCl_3 (Halbleiterqualität, 99,99%) und TiCl₄ (99,99%) wurden in einem langsamen Strom (3 1/Std.) von nach-

gereinigtem H₂ verdampft und bei 1150 ± 10 °C (optimale Temperatur) an einem mit röntgenamorphen BN überzogenen Graphitscheibchen als Substrat zersetzt. Die mikro- bis grobkristalline *I*-tetragonale Bor-Titan-Phase (B₁₂)₄B₂Ti_{1,3...2,0} schied sich bei Molverhältnissen im Pyrolyse-Gas von BCl₃: TiCl₄ = 100:1 bis 10:1 ab. Die grobkristalline Phase enthielt ausschliesslich Kristallzwillinge, woran auch zahlreiche Syntheseexperimente unter verschiedenen Bedingungen nichts änderten. Sehr bevorzugt war der Zwillingswinkel 36° 52′. So besassen sechs Kristalle aus vier verschiedenen Pyrolysen einen Zwillingswinkel von 36° 52′ und nur einer 28°.

Zur Analyse wurden 50-mg-Proben aus der Umgebung der röntgenographisch verwendeten Kristalle mit Na_2O_2 und Na_2CO_3 aufgeschlossen. Titan wurde kolorimetrisch als Peroxodisulfatotitansäure nach Ginsberg (1950), Bor ebenfalls kolorimetrisch als Dianthrimidchelat nach Brewster (1971) bestimmt. Die Dichten wurden mittels Schwebemethode bei 20°C gemessen. Tabelle 2 enthält die Daten.

Röntgenaufnahmen

Schwenk-, Drehkristall- und Equiinklination-Weissenberg-Aufnahmen der Schichten hk0-hk4 und 0kI-3kIwurden bei 20 ± 2 °C von Kristallen mit Zwillingswinkeln von $36^{\circ}52'$ und $28 \pm 0,2^{\circ}$ mit Ni-gefilterter Cu K α -Strahlung hergestellt. Zur Strukturbestimmung wurde der unter $28 \pm 0,2^{\circ}$ verzwillingte Kristall verwendet. Von jeder Schicht wurden zwei, teilweise auch drei integrierte ($0,6 \times 0,4$ mm) Weissenbergaufnahmen angefertigt und die Intensitäten jeder Schicht auf eine gemeinsame Skala gebracht. Die Intensitäten der Hauptkomponente des Zwillingskristalls wurden mit einem Einstrahldensitometer gemessen. Um die Genauigkeit der Intensitätsmessung bei den schwachen Reflexen zu steigern, wurden vier symmetrieabhängige Reflexe und der jeweilige Untergrund vermessen und als Nettointensität der arithmetische Mittelwert verwendet. Nicht beobachtete Reflexe wurden in die Rechnung nicht einbezogen. Die Intensität lag unterhalb, für einige Reflexe in der Nähe der Nachweisgrenze für das Densitometer. Eine Diffraktometermessung war wegen zu langer Zählzeiten nicht möglich. Lorenz- und Polarisationskorrektur wurde ausgeführt. Auf eine Absorptionskorrektur konnte wegen der Kleinheit des untersuchten Kristalls verzichtet werden. Verfeinerungen nach der Methode der kleinsten Quadrate wurden durchgeführt bis die Veränderungen der Parameter, der Skalenfaktor, der Lagebesetzungszahlen und der isotropen Temperaturfaktoren weniger als 0.25 der Standardabweichungen betrugen. Ein konventioneller R-Wert wurde auf der Basis von 146 unabhängigen Reflexen berechnet. Verwendet wurde das Programmsystem von Sheldrick (1972), adaptiert von Öser.

Diskussion und Resultate

I. Erste Untersuchungen an Kristallen der neuen Phase ergaben keinen Hinweis auf eine Zwillingsbildung. Als Auslöschungsbedingung für eine tetragonale Elementarzelle mit $a_z = 19,745$ Å und c = 5.072 Å wurde gefunden: hk0-Reflexe nur vorhanden für h+k= 2n. Dies führte zur Raumgruppe P4/nmm. Allerdings waren noch wesentlich mehr Reflexe als der Auslöschungsbedingung entsprach ausgelöscht. Die durch die tetragonale Symmetrie verbundenen Reflexe zeigten keine ausserhalb der Fehlergrenze liegende Abweichungen der Intensitäten. Dreidimensionale Fourier-

Tabelle 1. Borreiche Boride mit I-tetragonaler Struktur

Borid	a(Å)	c(Å)	Raumgruppe	Literatur
'I-tetragonales Bor'	8,75	5,06	P4,/nnm	Hoard, Hughes & Sands (1958)
B ₁₂ Be	8,75	5,06	$P4_2/nnm$	Becher (1960)
B ₂₅ Ni	8,986	5,078	$P4_2/nnm$	Decker & Kasper (1960)
B ₂₅ Zn	9,006	5,06	$P4_2/nnm$	Picon, Pichat & Cueilleron (1964)
$(B_{12})_4Be_{1,6}Al_{2,4}$	8,75	5,06	$P4_2/nnm$	Becher & Neidhard (1968)
$(B_{12})_4 B_2 C$	8,77	5,07	$P4_2/nnm$	(Amberger & Ploog (1971)
$(B_{12})_4 B_2 C_2$	8,77	5,07	$P4_2/nnm$	Ploog & Amberger (1971)
$(B_{12})_4B_2N_1\ldots_2$	8,646	5,127	P42m	Amberger & Schmidt (1971) Ploog, Schmidt, Amberger, Will & Kossobutzki
$(B_{12})_4 C_2 A l_3$	8,808	5,061	$P\overline{4}2m$	(1972) Kunzmann (1973)

Tabelle 2. Analysendaten, Dichten und Zwillingswinkel des I-tetragonalen borreichen Borids (B12)4B2Ti1.30...2.00

		Gew. – %	Gew. – %			
		±0,5 %	±0,3 %		d^{20}	
Borid		Bor	Titan	Summe	g cm ⁻³	Zwillingswinkel
$(B_{12})_4 B_2 T i_{1,87}$	gef.	85,4	14,1	99,5	$2,645 \pm 0,005$	$28\pm0,2^{\circ}$
(10) h in 100 h	ber.	85,8	14,2	100,0		
$(B_{12})_4 B_2 T i_{1,30}$	gef.	89,2	10,2	99,4	$2,530 \pm 0,005$	mikrokristallin
	ber.	89,7	10,3	100,0		
$(B_{12})_4 B_2 T i_{2,0}$	gef.	84,5	15,0	99,5	$2,675 \pm 0,005$	36° 52′
	ber.	85,0	15,0	100,0		

synthesen lieferten mit aus Pattersonsynthesen gewonnenen Ti-Parametern bei Verwendung des Datensatzes hk0-hk3 (c als Drehachse) ein anderes Bild als bei Verwendung des Datensatzes 0kl-3kl (a_z als Drehachse). Nach Vermessung des im folgenden Abschnitt II diskutierten Kristalls mit dem Zwillingswinkel $28 \pm 0.2^{\circ}$ konnte nachgewiesen werden, dass alle bislang untersuchten Kristalle der neuen Phase in spezieller Weise verzwillingt waren. Es galten folgende Beziehungen: a_1^* und a_2^* , die reziproken Achsen der Zwillingskomponenten (1) und (2), bilden einen Winkel $z = 36^{\circ} 52'$, tan z =0.75. a_{z} , die a-Achse der durch überlagerung der Zwillingskomponenten vorgetäuschten grossen tetragonalen Zelle, ist um den Faktor $\frac{1}{5}$ grösser als die *a*-Achsen der Zwillingskomponenten. Fig. 1 gibt die Überlagerung der reziproken Gitterebenen *hk*0 der Komponente (1) und (2) an.

II. Erst die Vermessung eines Kristalls mit einem Zwillingswinkel von $28 \pm 0.2^{\circ}$ führte zur Klärung des oben beschriebenen Überlagerungsphänomens und zur korrekten Indizierung der Weissenbergaufnahmen. Die Zwillingsanteile (1) und (2) unterschieden sich deutlich in ihren Intensitäten. An Auslöschungsbedingungen wurden gefunden: *hk*0-Reflexe nur vor-

Fig. 1. Überlagerung der reziproken Netzebenen hk0 bei Zwillingskristallen mit einem Zwillingswinkel von $36^{\circ}52'$ zwischen a_1° und a_2° . × Reflexe hk0 der Zwillingskomponente (1). \bigcirc Reflexe hk0 der Zwillingskomponente (2). Die Graphik verdeutlich, dass die durch Überlagerung entstandene reziproke Netzebene mit der Achse a_2° Spiegelebenen nach 90° und 45° hat.

handen für h+k=2n und 0kl-Reflexe nur vorhanden für k+l=2n. Hieraus resultiert die Raumgruppe $P4_2/nnm$. Diese Raumgruppe tritt bei den meisten Phasen mit *I*-tetragonaler Struktur auf (siehe Tabelle 1). Mit NaCl geeichte Weissenbergaufnahmen ergaben für die neue Elementarzelle folgende Dimensionen und geschätzte Abweichungen: a=8,830 (9), c=5,072 (12) Å; $V=395,5\pm1,7$ Å³.

Die zweidimensionale Pattersonsynthese lieferte die x-, v-Parameter der Titanatome. Eine Unterscheidung der Punktlage 2(a) und 2(b) war nicht möglich. Hierauf wurde eine dreidimensionale Fouriersynthese durchgeführt, und zwar mit den Parametern der 48 Ikosaeder-Boratome, wie bei Ploog, Schmidt, Amberger, Will & Kossobutzki (1972) für B₅₀C₂ angegeben. Hieraus ergab sich die Lage 2(a) für die Titanatome. Eine Verfeinerung der Parameter der Ikosaeder-Boratome, der Skalenfaktoren und der Lagebesetzungszahl der Titanatome führte zu einem bereits guten Modell. Fixiert man umgekehrt die Titanatome auf die Lage 2(b) und gibt nach und nach die x- und y-Parameter jeder Ikosaeder-Boratom-Lage frei, so haben sich nach einigen Verfeinerungszyklen die Ikosaeder um 36° um ihre 5-zählige Achse gedreht und die ursprüngliche Umgebung der Titanatome ist wiederhergestellt, d.h. Ti auf Lage 2(a). Eine Fixierung der Ikosaeder und eine gleichzeitige Fixierung der Titanatome auf 2(b) führt zu einem starken Anstieg der R-Werts (35,16%). Fouriersynthesen und Differenzfouriersynthesen zeigen Elektronendichte auch auf Lage 2(b). Hier befinden sich die beiden Einzelboratome. Die Differenzfouriersynthese ergab für 2(b) etwa 5,9 Elektronen pro Platz. Die erhöhte Elektronenzahl weist auf einen Elektronenshift vom Titan zum Einzelboratom hin. Boratome in 2(b) allein können die I-tetragonale Struktur nicht stabilisieren (Amberger, Druminski & Dietze, 1968; Ploog & Amberger, 1971). Wie ausgeprägt der stabilisierende Effekt der Titanatome ist, konnte wegen der Ungenauigkeit der Fouriersynthese bei nur 146 unabhängigen Reflexen allerdings nur abgeschätzt werden. Auf den Lagen 4(c) war keine Elektronendichte nachweisbar. Die Verfeinerung aller Parameter, der Lagebesetzungszahl der Titanatome und der isotropen Temperaturfaktoren führte zu einem R-Wert von 6.58% auf der Basis von 146 unabhängigen Reflexen (Tabellen 3, 4 und 5).

Tabelle 3. Beobachtete und berechnete Strukturfaktoren

н	٠	5	40	13	-	۲	L.	FO	FC	۲	۲	÷	40	15	-	*	L	÷J	11	H	ĸ	L	FQ	FC	•	"	ι	FO	F.
:		,	+0	- 2		12	2	12	+10	3	• 2	1	12	12	2	•	2	15	:5	,	,		٤	• 5	3		3	18	-: 4
÷	,	>	,			- 12	- i -	23	23	ż	10	1	12	+;3	•	•	2	1.	-1-	÷.	-	3	15	15	÷.	1		10	- 25
,	;		17		- 6		- 1	23	-23	٠	.1	1	13	• i •		•	2		• *	- i -	- A		35	- 35	- Š	;		50	
÷.	-	÷.	59			;	i	23	- 25	1	1	2	27	-24	,		2		- 12	;	- 5	5	20	-16	ĩ	;	÷.		- 12
÷.	i.		14	- ír	- 2	÷.	i	- 14		ō.	,	z	1.7	22	٠		z	15	,	i.	i		35	- 12	;		4	22	1
		- 2	25	>>		•	i	- 53	- i 1	2	2	4	· ·	*e' -	•	7	- 2	18	-17	1	÷.		10	11	ñ	- i		īe.	-19
2		:	34	- 31	ž		- 1	- 11	- 11	1	3	2	23	31	•	3	~	17	-1'	÷.		3	iż	-17	j.	- i	4	12	
÷.		÷.		- 23	-	÷.		25	2.	ż	•	z	4	•	,		2	:5	12	÷.	6	3	- E2	- i 1	à		4	- 55	- 55
÷.		÷.	- 21	- 55				- 22		÷.	,	2	20	·2 %	3	٠	,		-12	Ċ.	- 6		- 12	-12	;	- 2	-	- 14	- 00
÷.	÷.		- 23	- 54	÷.	-		- 22	- 52	÷.	-	- 2	÷.	- 2.5	÷.		2	17	- 11	;		÷.		1.5	-			12	
÷.	- C		- 32	- 10	- 6	÷.		39	- 23	- 1		٤.	11	• : *			2	- i ə			-	- î	5.	- 3	÷.	÷		20	- 63
÷.	-	- ÷.		- 23	- 5			- 12		;		1	- 22	- 25	à		2	10	- 6 t	÷.	÷.	- i			;	í		14	
			- 12		- 2	- ÷		- 65		÷.		- 2	- 23	- 24	•		,	- E.		÷.							- 2		1.
÷.			- 63	11	÷.			- 23	1.1.1	- 2	- 2		- 24			- 2	,	- 28	+2.	- 1		- ÷	1.	1.5		- 2	- 7		- 227
÷.	-	- C.	- 11	53	÷.			5.	- Ye	- 7		- 5	- 22	1.1	- 5			- ;	1.	÷.		÷.				- 2		- 12	- 22
:	,	÷.	- 55	1.1	ž	•		- 14	- 1 a	;		2	- 33	- A-	j			1.1		÷.	ř.	à			Ā	ň	- 2	•;	- 11
÷.			- 11	- 11 L	- 2	,		- 63		- i-	÷.	2	12	1.5	۰.	2	2	- 55	• 1 •	÷.	-	- i	- 18			÷	- 2		
	- 2		- 52	- 14		,	- í	26	123	÷	÷.	-	- 33	+23	5		2	•	÷.	÷	,	-	- 11	1.1	;		- 2	- 12	- 213
		÷.	- 14		- 7	4		- 32		-			- 15	1.1	÷.		ż	2.5	12	- 2	•	- i	- 55		-		- 2	12	- 113
1	- 2	÷.,	- 23	- T.C.	- ;	-		- 55	- 15	- 2	÷.		- 11		,	- 12	2	- 88		÷.	•	- i	- 12	114			- 2	•;;	- 11
		- 1	10	- 11	- 2			- 22	· · ·	;	1				- 1	- C.a.	2	- 12				- i	- 11	- 7.5			- 2		- 222
	- 5		- 22		- 7	5				- 5	- 2	;	- 52	1.1	÷.	- 12	ż		- 11 I	:	ž	- î	16	- 14	•	•	-		
	- 2	- ÷.	- 12				:	- 11		- 2		;	- 13	- 13			ž		+22	÷.		i.	15						
		1	- 17	- 221	- í.		- 1	- 12	1.1			•	- 11		- 1		j,	19	- 15			÷.	17						
,	14		- 11	- 11	- 1		i	- 15	- 11		- 1	;	٠,		- 1	- 2	- 2	19	- 2 -	;	÷	i	٠.						
	•		· · ·				•	••					• •		•	•				•				•					

Tabelle 4. Endgültige Parameter der Phase (B₁₂)₄B₂Ti_{1,87} und Standardabweichung

X	У	2
0,0000 (0)	0,0000 (0)	0,0000 (0)
0,3276 (7)	0,0858 (7)	0,4131 (15)
0,2347 (8)	0,0834 (8)	0,0981 (19)
0,1253 (10)	0,1253 (10)	0,3850 (28)
0,2433 (8)	0,2433 (8)	0,5866 (29)
0,0000 (0)	0,0000 (0)	0,5000 (0)
	0,0000 (0) 0,3276 (7) 0,2347 (8) 0,1253 (10) 0,2433 (8) 0,0000 (0)	x y 0,0000 (0) 0,0000 (0) 0,3276 (7) 0,0858 (7) 0,2347 (8) 0,0834 (8) 0,1253 (10) 0,1253 (10) 0,2433 (8) 0,2433 (8) 0,0000 (0) 0,0000 (0)

 Tabelle 5. Lagebesetzungszahlen, isotrope Temperaturfaktoren B und Standardabweichung der Phase

$(B_{12})_4 B_2 Ti_{1,87}$

I	Lagebesetzungs	-
m	zahl	В
	0,117 (5)	0,55 (18)
	1,000 (20)	0,60 (20)
	1,000 (23)	1,26 (23)
	0,500 (18)	1,87 (42)
	0,500 (11)	0,95 (29)
	0,125 (12)	1,65 (46)
	1,000 (23) 0,500 (18) 0,500 (11) 0,125 (12)	1,26 (23 1,87 (42 0,95 (29 1,65 (46

Struktur

Die tetragonale Elementarzelle des $(B_{12})_4 B_2 Ti_{1,87}$ enthält vier verzerrte Ikosaeder in verzerrt tetraedrischer Anordnung (Fig. 2). Die intraikosaedrische B-B-Bindungen schwanken zwischen 1,772 und 1,978 Å (Tabelle 6). Die mittlere intraikosaedrische B-B-Bindungslänge beträgt 1,816 Å. Zum Vergleich: $(B_{12})_4 B_2 N_2$: 1,801 Å, $(B_{12})_4 B_2 C_2$: 1,806 Å, Kossobutzki (1973); AlB₁₀: 1,810 Å, Will (1967). Die maximale Abweichung vom Mittelwert, 0,162 Å, tritt zweimal pro Ikosaeder auf. Eine ähnlich grosse Abweichung wurde im YB₆₆ beobachtet (Naslain, Etourneau & Kasper, 1971).

Tabelle 6. Die intraikosaedrischen und interikosaedrischen Bor-Bor-Bindungen

Indizierung der Boratome wie in Fig. 2.

	Bindungs-	
Boratome	länge (Å)	Häufigkeit
11-13	1,978 (15)	2
10-21	1,772 (12)	4
11-23	1,796 (14)	4
10-31	1,826 (9)	4
10-41	1,808 (12)	4
21-23	1,890 (15)	2
22-31	1,786 (16)	4
23-41	1,805 (13)	4
31–41	1,793 (13)	2
1-1'	1,750 (12)	4
2-2'	1,777 (13)	4
4-4'	1,661 (15)	2

Die Lage 2(a), das Zentrum des aus Ikosaedern gebildeten Tetraeders, besetzt ein Titanatom. Es befindet sich damit im Zentrum eines Polyeders aus insgesamt vierzehn Boratomen. Abstände und wichtige Winkel siehe Tabelle 7. In diesem Polyeder bilden die acht nächsten Nachbarn (20, 22, 27, 26, 29, 28, 25, 24) einen gewellten Ring, ähnlich dem Cyclooktatetraen-Ring. Beidseits des Rings (in Richtung der 'Ringnormalen') sitzt je ein Einzel-Boratom (50, 51). Sie bilden

 Tabelle 7. Beschreibung der Punktlage 2(a), auf der sich
 die Titanatome befinden, durch Angabe der wichtigsten

 Abstände und Winkel
 Abstände und Winkel

Indizierung der Boratome wie in Fig. 2.

Titan–Bor-Abstände

		Häufigkeit
Ti-20	2,255 (7) Å	8
Ti-31	2,502 (13)	4
Ti_50	2 536 (10)	2

Wichtige Winkel, die das Titanatom einschliessen:

		Häufigkeit
20-Ti-22	49,5 (4)°	4
20-Ti-27	92,8 (1)	8
20-Ti-32	84,8 (3)	8
20-Ti-50	77,3 (2)	4
20-Ti-51	102,8 (3)	4
22–Ti–27	46,4 (4)	4
22–Ti–32	115,7 (5)	8
24Ti27	123,5 (4)	4
25–Ti–27	154,4 (5)	4
25–Ti–32	43,7 (4)	8
25–Ti–50	102,8 (3)	4
25–Ti–51	77,3 (2)	4
26–Ti–32	112,3 (4)	8
32–Ti–50	38,7 (3)	4
32–Ti–51	141,3 (5)	4

Winkel, die den 'Cyclooktatetraen-ähnlichen Bor-8-Ring' charakterisieren

Ti-24-20	66,8 (4)°	8
Ti-20-22	65,2 (4)	8
22-20-24	125.9 (4)	8

Fig. 2. Elementarzelle des *I*-tetragonalen (B₁₂)₄B₂Ti_{1,87}. Die Zahlen (ausser '60' und '61') dienen der Indizierung der Boratome. Die erste Ziffer bedeutet: Punktlage, die zweite Ziffer: laufende Nummer des Atoms der durch die erste Ziffer indizierten Punktlage.

mit je zwei weiteren Ikosaeder-Boratomen (32, 34 bzw. 31, 33) zwei um 90° gegeneinander verdrehte Brücken. Die Bor-Titan-Abstände (2,255; 2,502; 2,536 Å) gleichen denen, die Decker & Kasper (1954) im TiB fanden (2,34; 2,36; 2,37; 2,40; 2,54 Å).

Die Einzel-Boratome (50, 51) auf der Punktlage 2(b)haben vier nächste Boratome im Abstand von 1,670 Å und zwei Titanatome im Abstand von 2,536 Å. Die Boratome allein bilden ein verzerrtes Tetraeder. Abstände und Winkel siehe Tabelle 8.

Tabelle 8. Beschreibung der Punktlage 2(b), auf der sich die Einzel-Boratome befinden

Indizierung der Boratome wie in Fig. 2.

Abstände		Häufigkeit
32-50	1,670 (13) Å	4
'Ti–50	2,536 (13)	2
Winkel		
31-50-32	86,0 (4)°	4
31-50-33	137,6 (5)	2

Die Lücken in der Punktlage 4(c) enthalten keine Elektronendichte. Ein in dieser Punktlage angenommenes Boratom hätte vier nächste Bor-Nachbarn (1,756 Å), vier weiter entfernte Bor-Nachbarn (2,505 Å) und zwei noch weiter entfernte Bor-Nachbarn (2,536 Å). Weitere Daten siehe Tabelle 9. Die vier nächsten Nachbarn bilden ein etwas grösseres und stärker verzerrtes Tetraeder, als dasjenige um die tatsächlich besetze Punktlage 2(b).

Tabelle 9. Beschreibung der leeren Punktlage 4(c)

Indizierung der Boratome wie in Fig. 2.

Abstände		Winkel	
60-12	1.756 (10) Å	12-60-17	129,0 (7)
60-22	2,505 (14)	12-60-18	150,9 (8)
6061	2,536 (10)	12-60-19	59,8 (4)
	, , ,	22-60-25	146,0 (8)
		22-60-27	41,6 (4)
		22-60-28	157,1 (9)

Abschliessend lässt sich bemerken, dass eine Diffraktometermessung der Intensitäten an einem nicht verzwillingten Einkristall wünschenswert wäre, um die Zahl der beobachteten Reflexe zu erhöhen und damit die Standardabweichungen der *B*-Parameter, Temperaturfaktoren und Lagebesetzungszahlen zu verringern. Zudem könnten Hinweise auf eine stärkere anisotrope Temperaturbewegung der Einzel-Boratome (50, 51) auf 2(b) in Richtung der *c*-Achse überprüft werden. Eine weitere Verbesserung der Analysen könnte die Frage klären, ob parallel zur statistischen Besetzung der Punktlage 2(a) mit Titan eine ebenfalls nur statistische Besetzung der Punktlage 2(b) mit Bor auftritt, was bedeuten würde, dass jedes Titanatom genau ein Einzelboratom stabilisieren kann. Für $(B_{12})_4B_2Ti_{1,87}$ allerdings ergaben Analyse und Dichtebestimmung die volle Besetzung der 2(b)-Lücken mit Boratomen.

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Gesellschaft von Freunden und Förderern der Universität München für die grosszügige finanzielle Unterstützung der Arbeit. Dem Consortium für Electrochemische Industrie, München, danken wir für wertvolle Sachspenden.

Literatur

- AMBERGER, E., DRUMINSKI, M. & DIETZE, W. (1968). J. Less-Common Met. 14, 466.
- AMBERGER, E. & PLOOG, K. (1971). J. Less-Common Met. 23, 21-31.
- Amberger, E. & Schmidt, H. (1971). Z. Naturforsch. 26b, 641–646.
- BECHER, H. J. (1960). Z. anorg. allgem. Chem. 306, 266-272.
- BECHER, H. J. & NEIDHARD, H. (1968). Acta Cryst. B24, 280–281.
- BREWSTER, D. A. (1971). In FRESENIUS-JANDER, Handbuch der analytischen Chemie, Teil III, Quantitative Analyse, III. Hauptgruppe, 2. Aufl., S. 100-101. Berlin-Heidelberg-New York: Springer-Verlag.
- DECKER, B. F. & KASPER, J. S. (1954). Acta Cryst. 7, 77-80.
- DECKER, B. F. & KASPER, J. S. (1960). Acta Cryst. 13, 1030-1031.
- GINSBERG, H. (1950). In FRESENIUS-JANDER, Handbuch der analytischen Chemie, Teil III, Quantitative Analyse, IV. Nebengruppe, S. 87–89. Berlin-Heidelberg-New York: Springer-Verlag.
- HOARD, J. L., HUGHES, R. E. & SANDS, D. E. (1958). J. Amer. Chem. Soc. 80, 4507–4515.
- Kossobutzki, K.-H. (1973). Dissertation, Universität Bonn.
- KUNZMANN, P. M. (1973). Thesis, Cornell Univ. cit.: Diss. Abstr. Int. 613-B, Order No. 73-18,346.
- NASLAIN, R., ETOURNEAU, J. & KASPER, J. S. (1971). J. Solid State Chem. 3, 101–111.
- PICON, M., PICHAT, P. & CUEILLERON, J. (1964). C. R. Acad. Sci. Paris, 258 (24), 5877-5882.
- PLOOG, K. & AMBERGER, E. (1971). J. Less-Common Met. 23, 33-42.
- PLOOG, K., SCHMIDT, H., AMBERGER, E., WILL, G. & KOS-SOBUTZKI, K.-H. (1972). J. Less-Common Met. 29, 161– 169.
- SHELDRICK, G. (1972). Programmsystem, adaptiert von H. ÖSER, Technische Universität Darmstadt.
- WILL, G. (1967). Acta Cryst. 23, 1071-1079.